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Executive Summary 
Mixture experiments present a unique test region that requires special consideration when designing 
experiments. These designs focus on a blending of components that cannot be altered independently. 
This results in a constrained design region that differs from more traditional design options. Therefore, a 
number of design options exist to best sample from this space. This paper will discuss simplex-lattice 
designs, simplex-centroid designs, optimal mixture designs, and space-filling mixture designs. The 
different polynomials that can be fit using these designs will be discussed. Additionally, a JMP 
demonstration on creating these designs and analyzing the data will be shown. 

Keywords: Mixture experiments, Constrained, Simplex, Optimal, Space Filling, JMP  

Introduction 
A common, but often overlooked, experiment is one that involves a mixture of ingredients to form a 
solution. Mixture experiments are special types of response surface experiments, and in these 
experiments, the goal is to determine if there is a blend of ingredients that produces a more optimal 
response (whether this is to maximize or minimize some property). In Experiments with Mixtures, 
Designs, Models, and the Analysis of Mixture Data, Cornell states that the goals of these experiments is 
to “try to model the dependence of the response variable … on the relative proportions of the 
components with some form of mathematical equation so that: 

1) The influence on the response of each component singly and in combination with the other 
components can be measured. If this is done successfully, those components having the 
least effect or felt to be less active might be “screened” out, leaving us with only those 
components having the greatest effect on the response. 

2) Predictions of the response to any mixture or combination of the components proportions 
can be made 

3) Mixtures or blends of the components that yield desirable values of the response can be 
identified” 

One such example of this would be in a mixture of gunpowder. Gunpowder is made up of three 
ingredients; sulfur, charcoal, and potassium nitrate. An experimenter might be interested in what 
combination of these ingredients produces the most force upon ignition. The amount of gunpowder in a 
given bullet is predetermined, but the proportion of the ingredients to be used can be adjusted. This 
created a constrained region as changing the amount of one factor level automatically affects the values 
of the other factors in the design. The constraint that the proportions all of the ingredients must add up 
to 100% creates a unique design region that differs from classical design settings. The additional mixture 
constraint is as follows: 

�𝑥𝑥𝑖𝑖

𝑞𝑞

𝑖𝑖=1

= 𝑥𝑥1 + ⋯+ 𝑥𝑥𝑞𝑞 = 1, 
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where q represents the number of ingredients in the system under study and the proportion of the 𝑖𝑖th 
ingredient in the mixture is denoted by 𝑥𝑥𝑖𝑖. In order to understand the relationship between ingredients, 
there are several techniques that can be used. Some techniques, such as trial and error or procedures 
using a large number of combinations, lack rigor and can be quite costly. More efficient designs can be 
utilized in order to understand the overall system performance as ingredient amounts change. This 
paper will explore the effects of a constrained design region and several techniques that provide useful 
results.  

Background 
In order to understand the basic concept of mixture designs and their analysis, we use the original 
mixture problem example from Cornell (2002) regarding the effect of blending fuels on mileage.  
Consider only two gasoline stocks, which we label fuels A and B. Assume that the response of interest is 
the mileage obtained by driving a test car with the fuel, where the mileage is recorded in units of the 
average number of miles traveled per gallon. Suppose we know that fuel A normally yields 13 miles per 
gallon (MPG) and fuel B normally yields 7 miles per gallon. These are examples of pure mixtures, blends 
containing 100% of a single ingredient. We might assume that with a gallon of each, we would average 
13+7=20 miles on 2 gallons, which is 10 miles per gallon. This is an example of a binary mixture, a blend 
made up of fractions of only two ingredients. However, it is possible that a blended mixture might 
produce a value higher or lower than expected based off the assumption of the two fuel types 
contributing equally. The question we wish to test is, “If we combine or blend the two fuels and drive 
the same test car, is there a blend of A and B such as 50:50 blend or a 33:67 blend of A:B that yields a 
higher average number of miles per gallon than the 10 miles per gallon of averaging the two?” The data 
from an experiment using a mixture of 50% of each fuel type can be seen in Table 1. 

Table 1: “Average Mileage for Each of Five Trials” from Cornell, 2002 

Trial Mileage from Two Gallons of 
50%:50% Blended Fuel 

Average Mileage per Gallon 

1 24.6 12.30 
2 23.3 11.65 
3 24.3 12.15 
4 23.1 11.55 
5 24.7 12.35 
 Overall Average 12.00 

If the blend is strictly additive, then we would expect an average of 10 miles per gallon, but we are 
interested in determining if this assumption holds true or not. We can then plot the expected results 
given our prior knowledge (that 100% of A is 13 MPG, 100% of B is 7 MPG, and a 50%:50% blend is 10 
MPG).  The assumption we are making is a linear relationship. Additionally, we can use the information 
from our experiment to update the line and see what our new predictions would be. Perhaps the 
relationship is not linear and we can observe this in our updated line. For this data, we would then plot 
100% of A is 13 MPG, 100% of B is 7 MPG, and a 50%:50% blend is 12 MPG (as seen in the data). This 
graph can be seen in Figure 1. 
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Figure 1: “Plotting the mileage of the 50%:50% blend of fuels A and B. The formula for the additive 
blending line is mileage = [(13 miles * A) + (7 miles * B)] / 100%” recreated from Cornell, 2002 

Since the blend produces a higher MPG than the expected 10 MPG, A and B are complementary to each 
other when blended. That is, the two fuel types cause a higher than expected resulted and combining 
the two results in more favorable results. This example shows the overall process of how to conduct a 
mixture experiment. However, a key step in planning a mixture experiment is determining what design 
to use to ensure the right data is collected. 

Method  
Mixture experiments present several unique challenges for designing an appropriate test. The test 
region is highly constrained, and it is not possible to change the levels of one factor independently of the 
others. A classical design such as a full factorial design will not yield the results that are needed to 
analyze these mixtures. Instead, several designs that will be discussed in the paper are simplex-lattice 
designs, simplex-centroid designs, optimal mixture designs, and space filling mixture designs, which if 
used appropriately, can overcome the challenges. 

Simplex-lattice designs 
These designs were introduced by Scheffé (1958-1965) and are credited with being the foundation for 
designed experiments for mixtures. The simplex-lattice design selects points spread evenly over the 
factor space. They are defined to support a polynomial model of degree m in q components over the 
lattice. This is denoted as a {q,m} simplex-lattice. Thus, q=2 is a line, q=3 is an equilateral triangle, and 
q=4 is a tetrahedron. The coordinate system is called the simplex coordinate system. We will have m+1 
equally spaced values from 0 to 1 on each axis such that: 

𝑥𝑥𝑖𝑖 = 0,
1
𝑚𝑚

,
2
𝑚𝑚

, … ,1 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑜𝑜𝑜𝑜 
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These designs sample all possible combinations of the components where the proportions for each are 
used. For example, for a {3,2} design: 

(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) = (1,0,0), (0,1,0), (0,0,1), �
1
2

,
1
2

 , 0� , �
1
2

 , 0 ,
1
2
� , �0,

1
2

 ,
1
2
� 

Note, there are no complete mixtures, blends made up of all the ingredients, in this design. For this 
reason, axial points can be augmented onto these designs to have a complete mixture represented, a 
design that will be discussed later. Several other examples of these designs can be seen in Figure 2. 

 

Figure 2: “Simplex lattice designs for q=3 and q=4 components” recreated from Cornell, 2002. 

If we look at the difference between the {3,2} and {3,3} lattice, we notice that there are an increased 
number of points along the axis. There are only 3 points on the {3,2} lattice where there are 4 points on 
the {3,3} lattice. Additionally, the {3,3} lattice includes and axial point in the center of the region. 

Polynomial Model 
In mixture experiments, the factors all sum to a constant (an added dependence) so a traditional full 
model will not be estimable. In other words, since we added a constraint to our design, we will no longer 
be able to fit the models traditionally used. Therefore, the Scheffé polynomial models, also called 
canonical polynomials, are used. This model estimates one less term by removing the intercept from the 
model. The model includes all linear main-effect terms and the two-factor interaction terms, but does 
not include squared terms. The models can be seen in Figure 3. 

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳:𝑬𝑬[𝒚𝒚] =  �𝜷𝜷𝒊𝒊𝒙𝒙𝒊𝒊

𝒒𝒒

𝒊𝒊=𝟏𝟏
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𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸:𝑬𝑬[𝒚𝒚] = �𝜷𝜷𝒊𝒊𝒙𝒙𝒊𝒊

𝒒𝒒

𝒊𝒊=𝟏𝟏

+��𝜷𝜷𝒊𝒊𝒊𝒊𝒙𝒙𝒊𝒊𝒙𝒙𝒋𝒋

𝒒𝒒

𝒋𝒋=𝟐𝟐𝒊𝒊<𝒋𝒋

 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪:𝑬𝑬[𝒚𝒚] = �𝜷𝜷𝒊𝒊𝒙𝒙𝒊𝒊

𝒒𝒒

𝒊𝒊=𝟏𝟏

+��𝜷𝜷𝒊𝒊𝒊𝒊𝒙𝒙𝒊𝒊𝒙𝒙𝒋𝒋

𝒒𝒒

𝒋𝒋=𝟐𝟐𝒊𝒊<𝒋𝒋

+ ��𝜹𝜹𝒊𝒊𝒊𝒊𝒙𝒙𝒊𝒊𝒙𝒙𝒋𝒋�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋� + 
𝒒𝒒

𝒋𝒋=𝟐𝟐𝒊𝒊<𝒋𝒋

���𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒙𝒙𝒊𝒊𝒙𝒙𝒋𝒋𝒙𝒙𝒌𝒌

𝒒𝒒

𝒌𝒌=𝟑𝟑𝒋𝒋<𝒌𝒌𝒊𝒊<𝒋𝒋

 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪: 𝑬𝑬[𝒚𝒚] = �𝜷𝜷𝒊𝒊𝒙𝒙𝒊𝒊

𝒒𝒒

𝒊𝒊=𝟏𝟏

+ ��𝜷𝜷𝒊𝒊𝒊𝒊𝒙𝒙𝒊𝒊𝒙𝒙𝒋𝒋

𝒒𝒒

𝒋𝒋=𝟐𝟐𝒊𝒊<𝒋𝒋

+ ���𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒙𝒙𝒊𝒊𝒙𝒙𝒋𝒋𝒙𝒙𝒌𝒌

𝒒𝒒

𝒌𝒌=𝟑𝟑𝒋𝒋<𝒌𝒌𝒊𝒊<𝒋𝒋

 

Figure 3: Canonical Polynomials, notation from Cornell 2002 

Each 𝜷𝜷𝒊𝒊 is the expected response for the pure mixture 𝒙𝒙𝒊𝒊=1, 𝒙𝒙𝒋𝒋=0, j≠I and is the height of the mixture 
surface at the vertex 𝒙𝒙𝒊𝒊 = 𝟏𝟏. The amount of each polynomial given by ∑ 𝜷𝜷𝒊𝒊𝒙𝒙𝒊𝒊

𝒒𝒒
𝒊𝒊=𝟏𝟏  is called the linear 

blending portion. The linear canonical polynomial is appropriate when the blending is strictly additive. 
The quadratic blending, also referred to as synergism as the blending is non-linear, is often necessary 
when the linear relationship is not sufficient. Positive values of 𝜷𝜷𝒊𝒊𝒊𝒊 represent synergistic blending where 
negative values represent antagonistic blending. The cubic model can be used to account for both 
synergistic and antagonistic blending across a single edge. This is represented by the 𝜹𝜹𝒊𝒊𝒊𝒊 terms. The 𝜹𝜹 
terms represent the quadratic effects and are incredibly useful when the blends are not strictly 
complementary to one another. These two effects can be seen in figure 4. The 𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊 terms account for 
ternary blending among three separate components in the interior of the design. 

 

Figure 4: “Nonlinear blending. (a) Quadratic blending with 𝜷𝜷𝒊𝒊𝒊𝒊 > 𝟎𝟎. (b) Cubic blending with 𝜹𝜹𝟏𝟏𝟏𝟏 > 𝟎𝟎”   
recreated from Myers et al., 2016. 

Simplex Centroid Design 
Prediction in the middle of the model would be difficult or risky using a simplex-lattice design since 
those designs do not contain test points in the center of the design region.  The simplex centroid design 
attempts to correct for this by introducing a center point to the design. A simplex centroid design of q 
components is composed of pure mixture runs, all combinations of 2 to the k factors at equal levels, and 
a center point run with equal amounts of all ingredients. Therefore, the design will consist of 2𝑞𝑞 − 1 
distinct design points. Figure 5 shows an example for q=3 and q=4. 
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Figure 5: “Simplex-centroid designs with three and four components. (a) q=3. (b) q=4” recreated from 
Myers, et al 2016. 

This design allows for a polynomial of the form: 

𝐸𝐸[𝑦𝑦] =  �𝜷𝜷𝒊𝒊𝒙𝒙𝒊𝒊

𝒒𝒒

𝒊𝒊=𝟏𝟏

+ ��𝜷𝜷𝒊𝒊𝒊𝒊𝒙𝒙𝒊𝒊𝒙𝒙𝒋𝒋

𝒒𝒒

𝒋𝒋=𝟐𝟐𝒊𝒊<𝒋𝒋

+���𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒙𝒙𝒊𝒊𝒙𝒙𝒋𝒋𝒙𝒙𝒌𝒌

𝒒𝒒

𝒌𝒌=𝟑𝟑𝒋𝒋<𝒌𝒌𝒊𝒊<𝒋𝒋

+ ⋯𝛽𝛽12…𝑞𝑞𝑥𝑥1𝑥𝑥2 … 𝑥𝑥𝑞𝑞 

Note that when q =3, this is the same as the special cubic polynomial (as seen in figure 3). Since the 
cubic model is the natural result of these designs, they are incredibly powerful if the experimenter 
suspects there are cubic terms in the final model. 

Augmenting Simplex Designs 
The simplex designs that have been discussed place all of the design points, with the exception of the 
centroid, on the boundary of the simplex. This means that almost all of the points represent either a 
pure blend or a binary blend. We only have a single point (if a centroid is included) that gives 
information about a complete mixture. Since there is often a desire to understand the performance of 
complete mixtures, augmenting the simplex designs with axial runs and the overall centroid can be a 
powerful tool. 

The axis of component 𝑖𝑖 is defined as the line or ray extending from the base point 𝑥𝑥𝑖𝑖 = 0, 𝑥𝑥𝑗𝑗 = 1
𝑞𝑞−1

 for 

all j≠i to the opposite vertex where 𝑥𝑥𝑖𝑖 = 1, 𝑥𝑥𝑗𝑗 = 0 for all j≠i. That is, this line connects the corner points 
to the midpoints of the opposite plane. This can be seen in Figure 6. 
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Figure 6: “The axes for components 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒂𝒂𝒂𝒂𝒂𝒂 𝒙𝒙𝟑𝟑” recreated from Myers, et al 2016. 

In the image above, the axial points are positioned along the component axes a distance of Δ from the 
centroid. Myers, et al. (2016) recommend that axial runs be placed midway between the centroid of the 

simplex and each vertex such that Δ = q−1
2𝑞𝑞

. These points are also referred to as axial check blends as 

axial runs are often used to check the adequacy of the fit of an initial model. Figure 7 shows an example 
of a {3,2} simplex-lattice design augmented with axial runs (total of 10 runs in the design).  

 

Figure 7: “An augmented simplex-lattice design” recreated from Myers, et al 2016. 

This design is comparable to Figure 2(b) that contains the {3,3} simplex lattice. Both of these designs 
have 10 points, but this augmented simplex-lattice design has 4 complete mixture points while trading 
off 3 binary points. This tradeoff is something to consider when assessing the objectives of a test. These 
designs are commonly used for screening experiments or when component effects are of interest. 
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Optimal designs 
Optimal designs for mixture models can use the same criterion as traditional optimal designs, the most 
common being D and I optimal. For more information on these criteria see Myers, et al. (2016). Note 
that the optimal design for a first order model is a pure mixture only design, for a second order model it 
is a simplex-lattice design, and for a cubic model it is a simplex-centroid design. Optimal designs 
however allow us to specify exactly what model we wish to build and construct a design most optimal 
given the number of runs allotted. This is also useful when we have an unusual number of runs and 
cannot use one of the traditional designs. Additionally, Goos and Jones (2011) note that ingredients 
used in mixture experiments are often mixtures themselves. This introduces additional constraints on 
the design as the lower and upper bound of the proportion of an ingredient is no longer 0 to 1. The 
example presented by Goos and Jones has three ingredients in a mixture. However, the proportions 
(𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) do not all have the same ranges. Instead: 

0.2 ≤ 𝑎𝑎1 ≤ 0.8 

0.2 ≤ 𝑎𝑎2 ≤ 0.8 

0 ≤ 𝑎𝑎3 ≤ 0.6 

Figure 8 shows this constrained design region. 

 

 

Figure 8: “Optimal design for a second-order Scheffé model in three ingredients in the presence of 
lower bounds on the ingredient proportions” recreated from Goos and Jones 2011. 

The design choice is still the same, however this is in an increasingly constrained region. We must now 
define pseudo-components, the more specific components that make up the 𝑎𝑎𝑖𝑖  components, as: 
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𝑥𝑥𝑖𝑖 =
𝑎𝑎𝑖𝑖 − 𝐿𝐿𝑖𝑖

1 −  ∑ 𝐿𝐿𝑖𝑖
𝑞𝑞
𝑖𝑖=1

 

where 𝐿𝐿𝑖𝑖 is the lower bound for proportion 𝑎𝑎𝑖𝑖. Now, the design is more realistic as the pseudo-
components will take on values from 0 to 1 but the 𝑎𝑎𝑖𝑖  components will not. For example, a run in which 
𝑥𝑥1 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥2 = 𝑥𝑥3 = 0, then 𝑎𝑎1 = .8,𝑎𝑎2 = .2,𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎3 = 0 

 

Space filling designs 
Space filling designs attempt to do as their name suggests; fill the entire space. These designs spread the 
points throughout the design region. Within JMP statistical software, there are two different optimality 
criteria that can be used. These two methods are MaxPro and Centroid, which are both Fast Flexible 
Filling design criteria. Let p be the number of factors and n be the specified sample size. The MaxPro 
criterion attempts to find points in clusters that minimize the following: 

𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  � � 1
∏ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑗𝑗)2𝑝𝑝
𝑘𝑘=1

�

𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖

 

“The MaxPro criterion maximizes the product of the distances between potential design points in a way 
that involves all factors” (JMP). These designs maximize the space-filling properties on projections to all 
possible subsets of factors. The centroid method differs by placing a design point at the centroid of each 
cluster. “It has the property that the average distance from an arbitrary point in the design space to its 
closest neighboring design point is smaller than for other designs” (JMP). For more information see 
Hanson (2008). 

Conclusion 
Mixture experiments are a common test that presents a unique statistical problem. The constrained 
design region and the inability to change a single factor at a time requires a special type of design. 
Several designs discussed are the simplex-lattice designs, simplex-centroid designs, optimal mixture 
designs, and space filling mixture designs. Each of these designs can be used depending on the objective 
of the test. Additionally, the polynomial that we wish to fit will help determine what type of design is 
best. Mixture designs can be a very powerful solution to a common experimental need and are 
applicable within the Department of Defense. Many research labs work with complex chemical solutions 
and these designs can be used to optimize the levels of each ingredient in the solution. Additionally, any 
textile that is a combination of several different materials can utilize these designs for testing different 
properties such as breaking strength. Mixture designs allow for a more efficient and effective test. 
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JMP Demo with analysis 
This example comes from Cornell, 2002. Three constituents- polyethylene (𝑥𝑥1), polystyrene (𝑥𝑥2), and 
polypropylene (𝑥𝑥3) were blended together and the resulting fiber material was spun to form yarn for 
draperies. A {3,2} simplex lattice design was used. The values of thread elongation in kilograms of force 
are measured and shown in the table below. 

 

To create this design in JMP: 

1. Open a New Data table 
2. Select “DOE -> Classical -> Mixture Design” 

 

3. Enter the factors into the factor window. Select the role of the variable and the number of levels 
and enter in the appropriate values 
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4. Select “Continue” 
5. JMP will provide a number of design options at this point. The optimal design, simplex centroid, 

simplex lattice, extreme vertices, ABCD Design, and space filling design. This paper did not 
discuss extreme vertices designs, but this design is used when not all of the ingredients can take 
values from 0-1 (creating a unique design space). The ABCD designs are designs that include 
axial runs. Inputs are required for several of the design choices. For this design, we are creating 
a simplex lattice design with the number of levels being 2. 
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6. Enter “2” into number of levels. This is the box where the image above currently has a “5”. 
7. Select “Simplex Lattice” 
8. JMP will output a Design. Select “Make Table” 
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9. This will produce a single-run simplex lattice design. For this example, we will need to add the 

additional runs for the replicates. Not all runs have the same number of replications so this will 
need to be done manually. The final table should look as follows: 

 
10. To analyze the data select “Analyze -> Fit model” 
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11. Select the “Y” variable and insert it into the “Y” window. Add the necessary factors that we wish 
to estimate into the “Construct Model Effects” window. For this example, we wish to estimate 
the main effects and the two factor interactions. Since we created this design using the Mixture 
models window in JMP, the main effects are already included with the “Mixture” attribute. 

 
12. If the main effects were not already given the “Mixture” attribute, we could include this by 

selecting the main effect -> selecting the red drop down next to attribute -> Selecting “Mixture 
Effect”. This is necessary so that we fit the appropriate polynomial (discussed previously) for a 
mixture design. 
 

 



STAT COE-Report-11-2020 

 

 Page 16  
  

13. Select “Run” 
14. The analysis will be completed. Several items that are of particular interest to us are the actual 

by predicted plot and the parameter estimates. The actual by predicted plot helps us visualize 
the accuracy of our model and displays an R-squared value that measures the percent of 
variability captured by the model. The parameter estimates tell us important information about 
each factor effect such as the estimate, the standard error, and the p-value. 

 
The final model built is: 

𝑦𝑦�(𝑥𝑥) = 11.7𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 9.4𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 16.4𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 19𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
+ 11.4𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 9.6𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

If the goal of this experiment is to produce yarn with high elongation, the single-component blend that 
produces the most optimal results is component 3. Components 1 and 2 and 1 and 3 have binary 
synergistic effects. Component 2 and 3 result in the yarn having a lower average elongation value than 
would be expected by averaging the elongation values of the yarn produced by a single-component 
blend. If a binary blend is desired, we would conclude that we should combine component 1 with either 
of the other components. 

 

Analysis of Variance

Source

Model

Error

C. Total

DF

5

9

14

Sum of

Squares

128.29600

6.56000

134.85600

Mean Square

25.6592

0.7289

F Ratio

35.2032

Prob > F

<.0001 *

Tested against reduced model: Y=mean

Actual by Predicted Plot

8

10

12

14

16

18

8 10 12 14 16 18

Y Predicted RMSE=0.8537 RSq=0.95 

PValue<.0001

Parameter Estimates

Term

Polyethylene(Mixture)
Polystyrene(Mixture)
Polyproylene(Mixture)
Polyethylene*Polystyrene
Polyethylene*Polyproylene
Polystyrene*Polyproylene

Estimate

11.7
9.4

16.4
19

11.4
-9.6

Std Error

0.603692
0.603692
0.603692
2.608249
2.608249
2.608249

t Ratio

19.38
15.57
27.17

7.28
4.37

-3.68

Prob>|t|

<.0001 *
<.0001 *
<.0001 *
<.0001 *
0.0018 *
0.0051 *
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